Reduced RNA polymerase II transcription in extracts of cockayne syndrome and xeroderma pigmentosum/Cockayne syndrome cells.

نویسندگان

  • G L Dianov
  • J F Houle
  • N Iyer
  • V A Bohr
  • E C Friedberg
چکیده

The hereditary disease Cockayne syndrome (CS) is a complex clinical syndrome characterized by arrested post-natal growth as well as neurological and other defects. The CSA and CSB genes are implicated in this disease. The clinical features of CS can also accompany the excision repair-defective hereditary disorder xeroderma pigmentosum (XP) from genetic complementation groups B, D or G. The XPB and XPD proteins are subunits of RNA polymerase II (RNAP II) transcription factor IIH (TFIIH). We show here that extracts of CS-A and CS-B cells, as well as those from XP-B/CS cells, support reduced levels of RNAP II transcription in vitro and that this feature is dependent on the state or quality of the template.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome.

Defects in the XPD gene can result in several clinical phenotypes, including xeroderma pigmentosum (XP), trichothiodystrophy, and, less frequently, the combined phenotype of XP and Cockayne syndrome (XP-D/CS). We previously showed that in cells from two XP-D/CS patients, breaks were introduced into cellular DNA on exposure to UV damage, but these breaks were not at the sites of the damage. In t...

متن کامل

Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein.

The human basal transcription factor TFIIH plays a central role in two distinct processes. TFIIH is an obligatory component of the RNA polymerase II (RNAP II) transcription initiation complex. Additionally, it is believed to be the core structure around which some if not all the components of the nucleotide excision repair (NER) machinery assemble to constitute a nucleotide excision repairosome...

متن کامل

Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells.

Cockayne syndrome (CS) is characterized by increased photosensitivity, growth retardation, and neurological and skeletal abnormalities. The recovery of RNA synthesis is abnormally delayed in CS cells after exposure to UV radiation. Gene-specific repair studies have shown a defect in the transcription-coupled repair (TCR) of active genes in CS cells from genetic complementation groups A and B (C...

متن کامل

Requirement of Yeast RAD2, a Homolog of Human XPG Gene, for Efficient RNA Polymerase II Transcription Implications for Cockayne Syndrome

In addition to xeroderma pigmentosum, mutations in the human XPG gene cause early onset Cockayne syndrome (CS). Here, we provide evidence for the involvement of RAD2, the S. cerevisiae counterpart of XPG, in promoting efficient RNA polymerase II transcription. Inactivation of RAD26, the S. cerevisiae counterpart of the human CSB gene, also causes a deficiency in transcription, and a synergistic...

متن کامل

The founding members of xeroderma pigmentosum group G produce XPG protein with severely impaired endonuclease activity.

Of the eight human genes implicated in xeroderma pigmentosum, defects in XPG produce some of the most clinically diverse symptoms. These range from mild freckling to severe skeletal and neurologic abnormalities characteristic of Cockayne syndrome. Mildly affected xeroderma pigmentosum group G patients have diminished XPG endonuclease activity in nucleotide excision repair, whereas severely affe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 18  شماره 

صفحات  -

تاریخ انتشار 1997